
At the start of the project, many team members had limited experience with C++, especially some of the more advanced features
like templates - which are used throughout the project to support genericity between 2D and 3D. A short series of lectures and
workshops on some of these topics was presented by Alan to bring these members up to speed.

Our initial timetable did not take into account the disparity between our workloads for other modules in Term 1 and in Term 2. We
have shifted some objectives to term 2 to compensate for this. We also underestimated the time taken to set up a working text ren-
dering system. We partially implemented a range of text libraries before �nally settling on FTGL.

When formalising project goals, we had a wide range of discussions on our interpretation of the project goal. At one point we con-
sidered expanding our spec to include implementing the Physics Abstraction Layer (PAL) API. This would have allowed comparison
between our implementation and other leading physics engines. Additionally, we thought it would allow us to easily integrate with
Scythe Physics Editor, which would provide an ‘out of the box’ 3D visualiser. Further research revealed that implementing Scythe
would be substantial work on top of implementing the required PAL interfaces. It was decided that these ‘extras’ deviated the proj-
ect from its core goals too much and were subsequently dropped.

Scythe integration was motivated by a desire to not spend an excessive amount of time on a potentially di�cult 3D visualising and
world editing sandbox. We got round this by deciding to make our current 2D visualiser more generic, at the expense of some fea-
tures planned for the full 3D visualiser. Our 3D sandbox has now been subsumed by the increased scope of the 2D sandbox. By
adding a simplistic 3D camera to the 2D sandbox we avoid a lot of code duplication at the cost of losing some 3D world manipula-
tion that would take too long to implement and generally be beyond our scope.

A scope we have expanded however is that of the 2D sandbox. Previously our aim was purely a very simple visualiser/sandbox, with
no real usable UI, only somewhat obscure events hard bound to keyboard keys - nothing more than a testing sandbox. After discus-
sion and seeing projects such as Phun, we have decided to make a far more user friendly sandbox with clear mouse-based controls.

Apply Forces

Update World

Broadphase
 Collision

Narrowphase
Collision

Contact
Resolution

Term 1 Break Term 2

FINAL
DEADLINE

OUR
DEVELOPMENT

DEADLINE

SPECIFICATION
DEADLINE

ENVIRONMENT
SAVING/LOADING

PROFILING
MODULARISATION

BROADPHASE
PART 1

GENERALISATION
OF SANDBOX

JOINTS AND HINGES
FORCE GENERATORS

CALLBACKS
SANDBOX PART 2

BROADPHASE
PART 2

3D IMPLEMENTATION
SANDBOX PART 1

ENSURING STABILITY
NAIVE FLUIDS

NOW

OCT NOV DEC JAN FEB MARSEPT

Term 1

1
Here we have two rectangular
bodies, each with its own
position, velocity, and rotation
speed.

2
We perform a bounding box
test to determine if the objects
are potentially colliding. In the
example here the bounding
boxes for the shapes are not
overlapping, so it would be
impossible for the shapes to
touch one another.

3
We have moved forward
several frames and the
bounding boxes are now
overlapping. This signals that
a more comprehensive test
will have to be performed to
check whether the objects
themselves are colliding.

4
We confirm whether they are
colliding or not by finding a
separating axis: a line onto
which we project the shapes. If
these projections are not over-
lapping, the shapes are sepa-
rated.

5
In the next frame, we find that
after moving the objects to
their new positions we can no
longer find a separating axis:
the objects are
interpenetrating.

6
The first thing we do is to
update the positions of the
objects so that the penetration
is removed.

7
Now we adjust the velocity
and rotation speed of the ob-
jects (realistically - note the
new rotations and velocities)
so that they will be moving
apart after the collision.

8
The objects now separate and
continue in their new
directions.

Our project objectives lend themselves naturally to an agile development methodology, rather than a more static, planned
approach. This agile methodology:

• Allows flexibility to adapt earlier designs when they become unworkable.
• Prioritises face-to-face developer communication over the creation of heavy documentation.
• Iterates over design, build and testing for each new feature added to the functional whole.
• Requires frequent testing of the entire system.
• Ensures a functional, evolving system at every step of the process.
• Requires regular contact with (and feedback from) the customer.

Development Teams
The twin development teams do not operate in isolation; they form small clusters for collaborative development. Team leaders
are responsible for selecting and delegating tasks, ensuring that deadlines do not perpetually slip and alerting the rest of the
team to serious issues should they arise.

Subversion is our version-control system; it manages and backs-up our code, allowing merges and roll-backs to always
maintain a working system.

Redmine is our project management web application. It lets us track progress towards development milestones and the bugs
or problems with the project, as well as facilitating communication and (light) documentation.

C++ is used as a mature and very powerful programming language with almost exclusive support in the application domain.
Many libraries are available and easily included, such as SDL and OpenGL for graphical output and FreeType and FTGL for text
rendering.

The flow of the physics system is detailed in the opposite figure. As shown there are
5 distinct phases that need to be completed for each physics update, namely:

• Apply Forces
This is the �rst stage of the simulation pipeline. Its sole job is to iterate through
the dynamic bodies present in the world and apply any forces to them such as
gravity, etc. The ForceGenerators all implement a standard interface that says
nothing about how the force is generated - allowing for complete flexibility.

• Update World
This simply takes the current time step and performs numerical integration
calculating the new velocities, positions and orientations from the current forces.

• Broadphase Collision
This component detects bodies that might be colliding. Naive checking
generates O(n2) possible collisions between n objects that need to be checked.
This can be greatly reduced by utilising the spatial distribution of the bodies.
There are numerous approaches to accomplish this, including: sweep-and-sort,
quad/oct-trees, and spatial hashing techniques.

• Narrowphase Collision
This component is responsible for taking the pairs of possible collisions
generated by the broadphase and checking if they are actually colliding. There
are many ways to accomplish this depending on the representation of the
underlying collision geometry. E�cient techniques borrow heavily from
computational-geometry to accelerate the checking process but still remain
relatively expensive hence the initial broadphase step to keep the number of
such checks to a minimum.

• Contact Resolution
The collisions discovered in the previous stages must be resolved. Meaning that
any inter-penetrations (due to the discrete time-step) must be corrected and a
physically correct collision response (taking into account both angular and linear
velocity, contact friction and restitution) must be created while still being
computationally tractable for realtime applications. This stage is key to stability
of the physics simulation and will ultimately determine the utility of the
produced physics library.

A goal from the outset of the project was to re-use as much of the code as possible and not replicate common functions for both
2D and 3D. With this in mind we adopted a heavily templated design allowing almost seamless creation of these common
functions but retaining the ability to specialise where required.

Aim
To create a modular real time physics engine library in C++.

What is a physics engine?
A Physics engine is a library that is used by other applications via an API to simulate collisions between
bodies in an environment. It is responsible for resolving everything from simple collisions between
primitive objects to handling vehicles and fluids.

Real-time physics versus high precision physics
Physics simulations can either be performed in real time or o�ine. O�ine simulations (or
High-Precision systems) aim to be completely physically accurate and suitable for scienti�c models of
physical interaction. Real time physics engines on the other hand trade some accuracy for speed, so
that although they generate visually convincing simulations, the physics may not be entirely realistic.
This is necessary in the context of an application like a game where the amount of time to compute
physics is bounded to ensure that the environment remains interactive.

Uses of a real time physics engine
• Games
• Real time 3D modelling / CAM
• Computer Aided Design
• Animated movies

Requirements
• 2 dimensional and 3 dimensional rigid body physics handled by the same library
• Joints and constraints for dynamic behaviour (springs, ropes, rods, pivots, hinges, etc...)
• Callback system for integration with third party applications
• Profiler for determining performance of modules
• Infrastructure for implementing and comparing different algorithms
• Cross platform support - primarily for both Windows and Linux
• Sandbox application to demonstrate functionality

Customer
• Customer is putting together a complete game engine
• Our physics engine would provide a component of that engine
• This will require well documented and rigorously tested APIs
• Especially important is the cross platform nature of the project

Motivation

• Interesting software development project with numerous avenues to consider for extension
• Potential to be useful to other developers, especially in small game projects
• Scope for research into different algorithms and implementations
• The highly interactive nature of the sandbox - realtime physics simulations are FUN!

