
Torque To Me
Specification: A Modular Physics Engine

Richard Falconer (0502730),
Ben Hallett (0504569),

Alan Hazelden (0523756),
Leigh Robinson (0123489),
George Stanley (0525142).

October 24, 2008

Abstract

We are going to develop a platform-independent physics engine that will al-
low real-time simulation of rigid bodies in both 2D and 3D. The engine will
be heavily componentised, utilising a solid and extensible object orientated
design to facilitate its use in a wide range of interactive applications. Within
this flexible framework we shall implement numerous published algorithms
for collision detection and collision resolution, with the aim of assessing their
strengths and weaknesses in particular scenarios. In addition to the core
physics API and statistics we shall create a sandbox application that will fa-
cilitate the demonstration of the project by allowing an end-user to view and
interact with live simulations.

1

4th Year Project Specification

1 Introduction

1.1 What is a Physics Engine?

A physics engine is, at its most basic level, a discrete software component that
encapsulates some useful physical simulation algorithms for easy re-use. The exact
nature of these algorithms may vary wildly with the intended application, giving
rise to classes of engines that each deal with a subset of physical laws. Within these
classes there are two further categories of physics engine, namely: high precision
engines and real-time engines.
High precision engines focus on the quantitative quality of the simulations produced,
but are not intended for use in time-critical applications, as high accuracy simula-
tions are generally very computationally expensive. They are utilised to produce
accurate simulation data for a very wide range of applications within both scientific
fields and industry. Real-time engines, by contrast, only simulate what is absolutely
necessary to produce a qualitatively realistic simulation, sufficient for use in interac-
tive applications; most commonly games. Both the accuracy and types of simulation
supported by this kind of engine are restricted by computational requirements to
maintain interactive rates of simulation. Since the focus of these types of engines is
to produce an interactive experience they tend to restrict their simulations to “ev-
eryday” phenomena such as Newtonian dynamics and fluids. It is these real-time,
interactive simulations that this project shall focus upon.

External ApplicationOur Library

Graphics RendererApplication State

Application Logic

Physics Library

Figure 1: Component integration diagram highlighting how a physics component
integrates within a host application.

Before physics systems became componentised into a discrete package they were
bespoke and heavily tied to the original application making extension and main-
tenance difficult. With the separation of the physics components from the host
application the way was clear for a true object-oriented framework to emerge to
allow the physics components to be easily extended and re-used in other projects.
Figure 1 shows the modern relationship between a typical application and a modular
physics component. This change became especially important for real-time engines

2

4th Year Project Specification

as the available computational speed increases made year after year allow previously
intractable simulations to be feasibly added. Many physics engine packages now ex-
ist, each having advantages and disadvantages over others in different situations due
to the way in which they represent and handle collision detection and resolution. It
is these such algorithm-level differences that our engine will be able to compare.

1.2 Motivations

1.2.1 Why are we creating a physics engine?

A physics engine provides an interesting software engineering challenge because al-
though it is an easily componentised problem, these subcomponents can prove chal-
lenging to implement efficiently. A physics engine structure is naturally represented
by the object-orientated paradigm, which is important as it facilitates teamwork and
interoperability while providing experience in a modern programming style that is
widely used on large scale projects throughout the industry.
In addition to providing experience with team development, a physics engine by its
very nature is designed to be reused by a third party as part of a larger application.
This provides experience in developing code that is easily extended and reused, again
a vital skill in industrial development.
Furthermore, an application that implements the physics engine with a visual rep-
resentation of the collisions is not only entertaining to develop and use but a very
demonstrable end product. The project will actually be interactive and end users
will be able to adjust the simulations to better understand exactly what has been
implemented.

1.2.2 What will make our physics engine different?

There are already many open source implementations of physics engines both for two
dimensional and three dimensional physics. Some examples include Box2D, Simple
Physics Engine and the Open Dynamics Engine. What differentiates this project
is that the engine is being designed from the outset to support the implementation
and analysis of multiple algorithmic solutions to each subcomponent, such as broad-
phase collision detection or contact resolution. The project will make it possible to
easily compare two different implementations of algorithms and provide metrics to
quantitatively analyse them.
It is outside the scope of this project to implement all of the features of the more
established physics engines, especially within three dimensional environments. How-
ever it will implement most if not all of the primitive operations (collisions between
boxes, spheres, and planes). This should allow a comparison between this physics
engine and others in scenarios that only operate upon these primitive objects. The
highly modular nature of our physics engine structure means that we can generally
implement each algorithm without adversely affecting our ability to implement oth-
ers. For this reason we do not have a strict ordering of algorithm implementations

3

4th Year Project Specification

in our development timeline; we plan to research their requirements then add as
many as we can.

1.2.3 How to compare physics engines?

There are several factors that can dictate the effectiveness of a physics engine in a
given scenario. The first is the type and algorithmic complexity of the algorithms
employed. Naive implementations fail fairly quickly even with a moderate number
of objects as their complexity is at best polynomial. Algorithms that have lower
asymptotic complexity are always sought after, as the central goal is to maintain
interactive simulation rates. As a consequence very good physics engines have algo-
rithms that can achieve almost linear amortised running times.
Engines can also be judged on the quality of the simulation provided as measured
by an appropriate metric. As mentioned, real-time physics engines have to use ap-
proximations to achieve their interactive rates. These optimisations not only reduce
the stability of the simulation but also tend to skew the underlying physics. These
inaccuracies could be quantitatively measured by analysing the physical parameters
of the simulation. For instance, checking that momentum and energy are always
conserved.
With a framework for implementing different algorithms, it will hopefully be possible
to form some conclusions about exactly what scenarios a given type of algorithm is
most suited to.

1.3 Customer

Nick Pope is one of the lead developers for the Warwick Game Design C++ Library
(WGD-Lib). One area in which WGD-Lib is currently lacking is that it has no
physics component, and Nick would like our project to result in something which
could be integrated into it. We would not be responsible for this integration, but we
must design and implement our system in such a way that it can be easily embedded
into WGD-Lib, or any other application or library.

2 Project Objectives

Our objectives for the project can be summarised as:

We aim to create a highly modular and extensible physics engine compo-
nent written in C++. It will efficiently support the simulation of rigid
dynamic bodies under the influence of arbitrary forces (on a world and
per body basis) and friction in both 2D and 3D environments. To support
the creation and demonstration of the physics engine we intend to create
a sandbox application that will allow for users to setup and interact with
simulations. The sandbox application (or derivative of) will also allow

4

4th Year Project Specification

us to conduct automated profiler tests to investigate the efficiency of the
current widely used algorithms.

2.1 Core features

• Collision of primitive shapes and compound shapes

Collision of primitive geometric shapes (2D and 3D) is the most basic level of
rigid body dynamics simulation. Compound shapes made by simple intersec-
tion of sets of primitives will be a fairly straightforward extension.

• Modular architecture

The framework needs to be sufficiently modular to allow the implementation of
multiple algorithms for each problem, and ultimately to allow other developers
to integrate the engine into their own applications. See Figure 2 for a high
level relationship between the main components.

• Multiple broad-phase collision detection algorithms

The so called “broad-phase” is the first attempt the engine makes at determin-
ing which objects are possibly colliding (rather than naively check all possible
O(n2) pairs). A suitable broad-phase algorithm can greatly reduce the amount
of computation required for the simulation by avoiding costly detailed colli-
sion detection. We will implement some (but probably not all) of the following
algorithms:

– Sort and sweep

– Bounding volume hierarchies

– Quadtrees/Octrees

– Uniform grid

– Spatial hashing

– BSP trees

• Efficient narrow-phase collision detection for geometrical primitives

The so called “narrow-phase” collision detection looks at the pairs of possibly
colliding objects determined by the broad-phase and carries out expensive
calculations to determine if they are indeed colliding. If they are deemed to be
colliding then the interpenetration depth and contact normal are passed onto
the contact resolver.

• Multiple collision resolution algorithms

Collision resolution algorithms take a list of colliding objects and resolve the
collisions. The choice of algorithm here will not only affect performance but

5

4th Year Project Specification

also the quality of the simulation, with regards to accuracy and stability. The
following are some options we have already identified and will research their
feasibility for the project in the coming weeks:

– Resolving different amounts of penetration per-frame

– For low-speed collisions, altering the coefficient of restitution

– Non-linear penetration resolution

– Generate contacts between nearby (non-touching) objects

– Contact caching

– Using Jacobian matrices to handle joints/constraints

– Warm starting

– Shock propagation

• Profiler allowing per-component performance statistics to be generated and
analysed

Within the physics library it will be important to keep track of statistics such
as the amount of time taken to perform an operation or the number of bodies
currently in the simulation. The profiler will be responsible for logging all
this information to memory efficiently, and then providing mechanisms for
other components to output this information. This information can later be
processed into graphs and figures to aid with the analysis of algorithms within
the system.

• Collision callbacks

In addition to taking the position of objects in the world, it will be important
for the physics engine API to be able to inform the application using it upon
certain events within the simulation. For instance, a game application may
require the library to alert it if an object collides with the player.

• Force/torque generators

Force generators allow the application to define forces on bodies within the
world. They can be used to implement attraction / repulsion between objects
and more complex constructs such as Springs. Torque generators allow for the
simulation of motors and other rotary actions.

• Simulation visualiser

In order to test the Physics Library and ultimately to demonstrate its func-
tionality, a visualiser will be required. This will take an initial state of the
world, defined either in the program or within an external file, and then allow
the user to see the movement of the objects in real time. It will also have the
option to output relevant statistics from the profiler to the screen.

6

4th Year Project Specification

• Stable simulation of objects

A challenging task within physics engines is making the simulation stable.
Many of the optimisations that yield interactive simulation rates also introduce
errors into the system, so that objects can resting upon one another can appear
to move or collapse when you would expect them to remain upright. Different
algorithmic approaches will need to be researched in order to try achieve a
high level of stability while sacrificing as little of the speed as possible.

• . . . all the above should work in both 2D and 3D simulations.

World
Profiler

Has One

Has Many

Has Many

Body

Shape

Narrow Phase Collision Detection

ForceGenerator
Contact Resolver

Broad Phase Collision Detection

Figure 2: Major components (described in 2.1) of a real-time rigid body physics
engine and how they are broadly related.

7

4th Year Project Specification

2.2 Further Work

The above constitutes a bare minimum of features that we must have in order for the
project to be a success. In addition, we have identified other features which would
further increase the utility of the project, but are more advanced and may not be
feasible in the limited time available. We will have to closely monitor our work in
this area to ensure that we do not waste time working on components that we cannot
complete. We would hope to implement at least one or more of the following:

• Joints and constraints

If we intend to provide a general purpose physics engine, it will be useful to
be able to specify relationships between bodies: for example saying that two
bodies are attached at (but can rotate around) a point. This enables the
simulation of vehicles, ragdolls and other more complicated objects. To get
acceptable performance, especially in 3D, it may be necessary to implement
more advanced contact resolution techniques.

• Fully-featured sandbox application to accelerate testing and demonstrate the
capabilities of the physics engine

While a simple visualiser would suffice to confirm realistic looking behaviour,
in order to adequately test all features, a more advanced sandbox application
may be required. This would allow the construction of additional test scenarios
and greater interaction with the simulation. While parts of the user interface
may be shared between the 2D and 3D versions of a sandbox, it is possible that
some sections would be more complex in 3D and would have to be dropped.

• Fluid dynamics and/or soft body simulation

These can be to a certain extent simulated as a set of particles, with forces
acting between the particles, which will both be supported by our engine.
This may only be computationally feasible in 2D, or possibly not feasible at
all without a large amount of optimisation.

• Advanced narrow-phase collision detection : arbitrary meshes

Not all shapes can be easily represented as a union of primitive shapes (i.e.
boxes and spheres). A more general approach would be to allow more com-
plex shapes, such as convex polygon meshes. A naive implementation of these
would likely give unacceptable performance, so we would have to turn to more
advanced algorithms for computational geometry such as GJK or VClip. These
would require a significant amount of work to both research and then imple-
ment.

8

4th Year Project Specification

3 Methodology

The project objectives lend themselves naturally to an agile development methodol-
ogy, rather than a more static, planned approach. The aim is not to construct some
monolithic application that must fulfil an immutable set of requirements. Rather,
it is to implement a variety of features (in the form of various algorithms for the
simulation of physical interactions) in a highly modular library. Consequently, re-
quirements may change frequently as (for example) a new module depends on unim-
plemented functionality in another, or one feature is abandoned in favour of a more
economical solution.
Our development methodology, then, must prioritise both inter-developer commu-
nication to ensure each team member fully understands every aspect of the project,
and the flexibility and freedom to alter previous plans if and when they are discov-
ered to be untenable (or unambitious). We must select tools that will not only aid
us in collaborating to achieve our initial aims as stated herein, but will grant us the
extensibility to go beyond them if desired. Above all else, if an agile methodology
is to be maintained, testing must be rigorously carried out at every stage to allow
us to identify problems at an early stage.
The principle drawbacks to this style of development - apart from the heavy time
burden incurred by regular tests - are twofold. First, the emphasis on face-to-face
communication detracts from the need to maintain formal documentation through-
out the project (indeed, many agile methodologies actively discourage it), but our
project will require such documentation for the end-product to be useful. Second,
the ability to embellish and extend plans in the middle of development allows for a
tendency towards feature creep, which may bloat the project and distract us from
our primary objectives. Both of these problems are addressed within our strategy:
in the first case, documentation is considered a primary objective as important as
any feature, and has a team member dedicated to its maintenance; in the second
case, our group organisation and collaboration techniques ensure that feature re-
quests are dealt with in a sensible order that will prioritise the completion of the
most important tasks. The project itself is actually reasonably feature-creep-proof
thanks to its modular nature, in that a given new feature is unlikely to break older
ones, and a single unimplemented feature will not render the entire product useless.

3.1 Group structure

Documentation Co-ordinator: Richard Falconer
The task of the Documentation Co-ordinator is to ensure that documentation is
maintained in a suitable condition for the customer to easily understand and use
the product. This individual also carries the responsibility of organising and over-
seeing the creation of other important documents (such as this one, and the project
presentations), editing them for style, correctness, and consistency, and ensuring
that they are completed on time.

9

4th Year Project Specification

Team A:
Leader: Leigh Robinson
Developer: George Stanley

Team B:
Leader: Alan Hazelden
Developers: Richard Falconer, Ben Hallett

The twin development teams do not operate in isolation; rather, they form small
clusters of support, within which each developer will first go to their teammate(s)
if they need to discuss an element of the project more immediately than a project
meeting can be organised. Each team may be focussed on a different area of the
project at a given time, allowing development to avoid serious bottlenecks. The team
leaders are responsible for selecting and delegating tasks, ensuring that deadlines do
not perpetually slip and alerting the rest of the team to serious issues should they
arise.

3.2 Development Strategies

Agile software development methodologies heavily emphasise daily face-to-face com-
munication between project members to keep everyone abreast of issues in the de-
velopment, and ours is no exception. All project members will see one another and
update each other on the project every day; this process is augmented through reg-
ular virtual contact via e-mail and instant messaging software. A more structured
meeting at which all group members are present is to be organised weekly (or more
frequently, as required) to assess and solve any problems that have arisen and to
ensure compliance with the schedule and objectives.

3.2.1 Collaboration Issues

Co-ordinating the collaborative authoring of code by five group members simulta-
neously working on a sophisticated software engineering and documentation project
gives rise to some not insignificant problems in organising and making available the
work a given project member has done. Fortunately, however, these problems are
also not insurmountable: there exist established tools for such collaboration, and by
making use of them, much of the administrative overhead of the project is relieved.

• Subversion

Subversion is a version-control system designed for managing large projects
with a great deal of code. It is able to merge two distinct versions of files
modified separately by group members into a single, complete file (or, failing
that, to highlight the differences between them to ease the task of resolving
the conflict manually). It serves as a backup system, and allows one to roll

10

4th Year Project Specification

back to previous versions if a newer one doesn’t work for some reason. It (or
something like it) is frankly essential for any group development effort.

Subversion is one of several competing technologies, other notable ones being
CVS and GIT. CVS was discounted because of its age; Subversion is newer
and provides more functionality, especially with regard to conflict resolution.
GIT is newer than SVN and - arguably - more powerful. It is complicated to
set up, however, and poorly supported by the other tools being used on this
project (such as Redmine, below, and project members’ IDEs). Ultimately
Subversion was chosen because it strikes the correct balance of functionality
and simplicity for this project.

• Redmine

Redmine is a project management web application. It provides a group with
tools to track both the development of features towards certain development
milestones, and the emergence of bugs or problems with the project. It imple-
ments a forum for informal group communication and a wiki for more perma-
nent developer documentation. It also integrates with the subversion reposi-
tory, providing a more human interface for browsing the repository for specific
files and viewing the most recent edits. Redmine can be configured to provide
each project member with updates in real time via e-mail or RSS/Atom feeds
when relevant changes occur to the project.

This webapp will be critical to co-ordinating development efforts and prevent-
ing feature creep, since each feature works toward a particular milestone, and
appears in a strict order. It will be easy to determine which features are impor-
tant to the final version, and which were dreamed up later on in the project.
The calendar features will also enable us to distribute the dates of meetings
or deadlines.

3.2.2 Development tools

This project is to be developed in C++. This decision was reached for a number
of reasons. Firstly, it is a language with which every group member was already fa-
miliar. Secondly, its object-oriented nature greatly facilitates the modular structure
of the library we intend to create. It is also the language in which the customer
intends to develop games in the future, and the language in which most games are
produced, due to its power and speed, meaning that the library will be most useful
written in C++.
As a long-established, well-used development language, C++ also has many other
code libraries that make the development of certain features easier. The SDL and
FTGL libraries will aid development of rich end-user tools such as the sandboxes,
while Boost and TinyXML will provide less conspicuous features to the library itself,
to name but a few.

11

4th Year Project Specification

3.2.3 Documentation

Although agile development has little time for documentation, ours will be consid-
ered a deliverable. With each project milestone, then, will come a requirement to
have complete documentation for that state of the project. Our Documentation
Co-ordinator will be tasked with ensuring this gets done by the relevant developer
on time. Such formal customer documentation will be presented in a combination of
LATEXand doxygen-generated HTML, since both are standards for the production of
such documentation. For certain tasks requiring highly specific documentation, we
will also use Umbrello, a UML modelling tool which can generate class diagrams and
use case diagrams automatically from the code. This not only greatly simplifies the
task but ensures that the resulting diagrams are provably accurate representations
of the real implementation.
Less-formal documentation, such as the information relayed between developers to
maintain an understanding of others’ work, will be light; most such information will
be conveyed verbally. That which cannot be easily remembered or articulated will
be recorded in the project wiki and in comments in the source code itself.

3.2.4 Testing

The most important element of any agile development methodology is frequent unit
testing. Without such testing, it is impossible to identify problems with the code
(and thus with the objectives as they stand), and the advantage of flexibility that
the methodology provides us will not be realised. Therefore, we require that every
component, once developed, is fully tested before being committed according to some
test cases decided by the developer themselves, and that each milestone is tested by
the group as a whole in a weekly meeting. Once again, the modular nature of the
project facilitates such testing, since small components can be isolated and tested
to allow for the swift detection and location of errors.
The nature of the project makes it difficult to test: its aim is verisimilitude, which
is both qualitatively assessed and somewhat subjective. While this can be checked
by the developers themselves, it will be best served by gathering as many opin-
ions as possible. To this end, particularly significant testing sessions will involve
demonstrating the current product to as many people as possible and recording
their assessment of its attempt to provide a close simulacrum of real Newtonian
dynamics.
The project may also be more quantitatively assessed on its stability and speed
under various loads, since its aim is real-time simulation. This will be tested with a
separate profiler class that measures the execution time of a set of calculations on
a given state of the simulation. This will allow us to identify bottlenecks that are
slowing the calculation down, and optimise them for better performance.

12

4th Year Project Specification

4 Timetable

Term1 and holidays (denoted h) (Included from Alan’s project, Completed, Scheduled)

Month September October November December

Week number h

h

h

1

2

3

4

5

6

7

8

9

1
0

h

h

h

h

Task Date

8

1
5

2
2

2
9

6

1
3

2
0

2
7

3

1
0

1
7

2
4

1

8

1
5

2
2

2
9

Sandbox

Sandbox skeleton
Sandbox input handling
Text rendering
Pre-set environments
Environment save/loading
Per-frame memory/cpu profiling

Library - General

Naïve collision detection
Naïve collision resolution
Modularisation of collision detection
Joints
Hinges
Constraints
Rods
Critical path analysis

Lib - Broad-phase algorithms

Naïve broad-phase collision detection
Sort & Sweep
Axis Aligned Bounding Boxes (AABB)
Bounding volume hierarchy
Quadtree/Octree/k-d tree

Lib - Collision detection algorithms

GJK
VCLIP

Lib - Contact resolution options

Contact caching
Resolving different amounts of
penetration per-frame

For low-speed collisions, alter coefficient
of restitution

Non-linear penetration resolution
Generate contacts between nearby (non-
touching) objects

Documentation

UML Class diagram
UML Activity diagram
UML Use cases
Final Spec write up
Poster
 Initial version Specification Poster & Contribution sheet 1

Figure 3: Gantt chart detailing term 1.

13

4th Year Project Specification

Term 2 (Completed, Scheduled)

Month January February March

Week number h

h

h

1

2

3

4

5

6

7

Task Date
5

1
2

1
9

2
6

2

9

1
6

2
3

2

9

Sandbox

UI development
Adding arbitrary polygons to 2D world
Altering friction of world bodies
Altering co-eff restitution of world bodies
Altering mass of world bodies
Vehicle support (Unlikely)

Library – General

Naïve fluid simulation
Shock propagation
Ensuring stability

Lib - Broad-phase algorithms

Uniform grid
Hierarchical grid
BSP tree

Lib - Collision detection algorithms

Lib - Contact resolution options

Warm starting

Using Jacobian matrices to handle
joints/constraints

Documentation

Doxygen formatting of comments
UML Class diagram update
UML Activity diagram update
UML Use cases update
Final Report

Figure 4: Gantt chart detailing term 2.

14

	Introduction
	What is a Physics Engine?
	Motivations
	Why are we creating a physics engine?
	What will make our physics engine different?
	How to compare physics engines?

	Customer

	Project Objectives
	Core features
	Further Work

	Methodology
	Group structure
	Development Strategies
	Collaboration Issues
	Development tools
	Documentation
	Testing

	Timetable

